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Abstract. In this paper, we address the problem of image annotation
with incomplete labelling, where the multiple objects in each training
image are not fully labeled. The conventional one-versus-all SVM (OVA-
SVM) that performs fairly well on full labelling decays drastically un-
der the incomplete setting. Recently, structured learning method termed
OVA-SSVM is proposed to boost the performance of OVA-SVM by mod-
eling the structured associations of labels and show efficiency under in-
complete setting. The OVA-SSVM assumes that each training sample
includes a single label and adopts an loss measure of classification style
that as long as one of the predicted label is correct, the overall prediction
should be considered correct. However, this may not be appropriate for
the multi-label annotation task. In this paper, we extend the OVA-SSVM
method to the multi-label situation and design a novel image specific
structured loss measure to account for the dependencies between pre-
dicted labels relying on the image-label associations. Then we develop an
efficient optimization algorithm to learn the model parameters. Finally,
we present extensive empirical results on two benchmark datasets with
various degree of incompletion, and show that proposed method outper-
forms OVA-SSVM and achieves competitive performance compared with
other state-of-the-art methods which are also designed for the issue of
incomplete labelling.

1 Introduction

Automatic image annotation is an important research problem, where each im-
age is associated with a set of labels and the target is to learn a model that
assigns multiple labels to an unlabeled new image to describe its visual con-
tent. In particular, the human annotations play an significant role in training
an annotation model as they provide empirical knowledge of the image-label as-
sociations. Although the quality of human annotations is quite crucial, one can
not expect to accurately obtain all the labels for a given image, since human
labelers usually tag only prominent labels and typically miss out on several ob-
jects present in the image. Here we pose a practical issue of incomplete labelling

that the training images are not completely tagged with all relevant labels from
vocabulary. As shown in Figure 1, the images from two benchmark datasets have
few human annotated labels and suffer from the problem of incomplete labelling.

The traditional annotation models such as generative models [3, 4] or nearest-
neighbor based models [5–7] generally neglect the issue of incomplete labelling
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bloom, leave clouds

Fig. 1. Example of incomplete labelling: two images are from benchmark datasets
IAPRTC-12 [1] (left) and NUS-WIDE [2] (right). Potentially correct labels such as
{flower, plant, tree, trunk}, {sky, grass} are missed from the ground truth of two
images respectively.

and treat the human annotated dataset as completely labeled. For these models,
given a labeled training image, labels that are not presented in the groundtruth
of that image make limited contribution to the annotation model. When applying
these models on incompletely labeled dataset, the annotation performance can
hardly achieve optimal because of the insufficient annotations of the dataset.
Therefore, in our work, we intend to develop an annotation method that is
more efficient for the incompletely labeled dataset. It should be noted that our
problem setting is different from the researches of tag completion [8–10] or tag
recommendation [11, 12], where their goal is to complete partially tagged images
offline or to recommend related tags to users online.

Regarding the methodology of annotation with incomplete labelling, one
group of recent ongoing researches [13–16] directly modify conventional annota-
tion prototypes such as multi-label ranking [13][16], binary SVM [14], and ridge
regression [15], by incorporating additional consistency between visual and se-
mantic cues in images to address the issue of incompletion. And the performance
of these methods greatly depends on the assumption of consistency. Moreover,
another group of works aim at boosting the conventional annotation models
and adding new learning stage under the incomplete setting incrementally. The
method utilized in the new learning stage could be multi-task learning [17], en-
semble learning [18], and structured learning [19, 20]. Here we would like to stress
that structured learning method is an efficient scheme to handle the difficulties
of incomplete labelling. Firstly, it captures the interdependencies of labels from
the structure in the output space. Secondly, the weak learning manner allows it
to explore the potential usages of missing labels, and those missing labels can
be captured by latent variables [21].

Specifically, in the celebrated work termed OVA-SSVM of [20], structured
learning method is adopted to boost the performance of pre-trained OVA-SVM
classifiers under incomplete setting, and it designs a structured loss function of
image classification style to benefit the prediction of missing labels. And promis-
ing prediction results are obtained on ImageNet [22] dataset where each training
image has a single label. However, the OVA-SSVM method may not be well ex-
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tended to more practical circumstances where each training image has multiple
labels, due to limitation of its structured loss used. Therefore, in this paper, we
put effort to improve OVA-SVM in three folds: (1) We extend the OVA-SSVM so
that the number of labels per training image can be flexible, which is more prac-
tical to the multi-label annotation problem. (2) We design a novel image specific
structured loss function which is more appropriate than previous flat structured
loss used in OVA-SSVM to account for the dependencies between predicted la-
bels relying on the specific image. (3) We develop efficient optimization algorithm
with lower complexity by exploiting the properties of proposed structured loss.
Empirical evaluations on two annotation datasets with various degree of incom-
pletion demonstrate that proposed annotation method can boost conventional
OVA-SVM classifiers, perform better than previous structured learning method
OVA-SSVM, and achieve competitive performance compared with state-of-the-
art methods designed for incompletely labeled dataset.

2 Problem formulation

In this section, we will first introduce the conventional OVA-SVM used for image
annotation task, then describe the OVA-SSVM method that uses structured
learning to boost OVA-SVM classifiers under incomplete setting. Some notations
used in the following sections are also defined in this section.

2.1 Conventional OVA-SVM

We are given an incompletely labeled dataset T = {(x1, Y 1), ..., (xN , Y N )}. Here
xn ∈ X represents the image feature vector, Y n ⊆ Y is a set of labels, where
Y = {y1, ..., yC} is the vocabulary of C labels. Note that Y n is a subset of the
ideally full set Ωn of groundtruth labels for image xn. Our goal is to learn an
annotation model that, for an unseen image x, outputs an optimal set Ŷ which
includes K distinct labels.

A conventional annotation model consists of learning a series of binary OVA-
SVM classifiers that distinguish a single label from all other. For a given label
yc, we denote the parameter vector of learnt OVA-SVM classifier as wyc

OV A, then

to predict a set of K labels Ŷ for an unseen image x, the annotation model
simply returns the labels with the K highest scores performing on classifiers of
all labels:

Ŷ = argmax
Y ∈Y

∑

yc∈Y

x ·wyc

OV A, (1)

where Y ⊆ Y represents any output set contain K labels. It is worth noting that
the annotation model of OVA-SVM classifiers is suboptimal since that (1) the
one-versus-all learning manner ignores the dependencies of labels, which implies
that OVA-SVM optimizes the prediction of only a single output label, ignoring
the “structure” altogether, (2) the performance of OVA-SVM classifiers drops
drastically when incomplete labels for training image are provided.



4 Xing Xu, et.al

2.2 OVA-SSVM

To overcome the disadvantages of conventional OVA-SVM and to exploit the
structured associations in output label set Y , the structured learning method
OVA-SSVM [20] considers that the training set consists of structured input-
output pairs T ∈ (X × Y)N . The prediction rule of optimal output labels Ŷ for
an unseen image x is

Ŷ = argmax
Y ∈Y

Φ(x, Y ) ·w = argmax
Y ∈Y

∑

y∈Y

φ(x, y) ·w, (2)

where Φ is the joint feature vector that describes the relationship between input
x and any structured output Y , φ is the joint feature vector for input x and
single label y in Y , and w is the parameter vector to be learnt. In particular,
given a set of pre-trained OVA-SVM classifiers {wyc

OV A}
yc∈Y , the joint feature

vector Φ(x, Y ) in OVA-SSVM is defined as

Φ(x, Y ) =
∑

y∈Y

x ◦wy
OV A, (3)

where x ◦ w
y
OV A represents the Hadamard product of x and w

y
OV A. Then the

annotation model in Eq. 2 can be formulated as

Ŷ = argmax
Y ∈Y

∑

y∈Y

〈x ◦wy
OV A,w〉. (4)

We can learn from Eq.4 that OVA-SSVM incrementally learns a single param-
eter vector w that re-weights the parameters of existing OVA-SVM classifiers
{wyc

OV A}
yc∈Y and incorporates the structure nature of output Y through the

joint feature vector Φ(x, Y ).
Moreover, for the incomplete setting of T , the input-output relationship is

not completely characterized by (x, Y ) ∈ X × Y. It is rational to introduce a
set of unobserved latent variables, Z = {Z1, ..., ZN}, where Zn represents the
set of labels that appear in image xn but were not annotated. The full set of
labels for the image xn is Ωn = Y n ∪ Zn (note that Y n ∩ Zn = ∅). Now the
joint feature vector Φ(x,Ω) describes the relation among input x, output Y and
latent variables Z, and it is defined as

Φ(x,Ω) =
∑

y∈Y

x ◦wy
OV A +

∑

z∈Z

x ◦wz
OV A (5)

To train OVA-SSVM, the parameter vector w is determined by minimizing
the regularized risk on the training set T . Risk is measured through a user-
provided structured loss function ∆(Y, Y n) that quantifies how much the pre-
diction Y differs from the given label set Y n of image xn. The resulting convex
optimization problem is to minimize the objective function as

min
w,ξ

λ

2
‖w‖2 +

1

N

N
∑

n=1

ξn (6)

s.t w · Φ(xn, Ωn)−w · Φ(xn, Y ) ≥ ∆(Y, Y n)− ξn, ∀n, Y ∈ Y.
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The constraints of Eq.6 identify the prediction Y with a score w ·Φ(xn, Y ) that
is smaller than the score w · Φ(xn, Ωn) of the “full” groundtruth Ωn by a soft
margin equals to the loss ∆(Y, Y n) with the slack variable ξn. The optimization
problem can be solved efficiently using a constraint generation strategy: we can
generate the constraint by identifying the most violated (incorrect) prediction
Ȳ from Y for the current parameter vector w on xn. This amounts to solving

Ȳ = argmax
Ŷ ∈Y

{∆(Y, Y n) +w · Φ(xn, Y )}. (7)

Given the definition of user-provided structured loss ∆, we can use Ȳ of all
xn ∈ X to approximate a lower bound of the objective in Eq.6. Then we can
compute the gradient of Eq.6, and alternately optimize the latent variables Z and
the parameter vector w. In the next section, we will introduce proposed image
specific loss term which is elaborately designed for incomplete labeled training
data, and derive the corresponding optimization algorithm in the structured
learning framework.

3 Proposed structured loss under incomplete setting

3.1 Image specific structured loss

Since the given label set Y n may not describe all the object in image xn, an
annotation model should not be penalized for predicting “incorrect” labels that
actually describe those objects in xn. To address this issue, a structured loss
function ∆ is designed in OVA-SSVM. Given a set of predicted output labels Y
for xn, the OVA-SSVM method would not give penalty if one of the predicted
labels y ∈ Y is similar to any of the groundtruth labels yn ∈ Y n. The loss
function is defined as

∆(Y, Y n) = min
y∈Y

min
yn∈Y n

d(y, yn), (8)

where d(y, yn) is the error term measuring the difference between label y and
yn. In practice, d(y, yn) could be a flat error measure: d(y, yn) = 0 if y = yn, and
1 otherwise. And d(y, yn) could also be a hierarchical error measure: d(y, yn) is
the shortest path distance between yn and y in a taxonomic vocabulary tree.

Actually, there are several limitations of the structured loss of Eq.8 for the
incomplete setting. Firstly, to predict output labels Y , ensuring that only one
of the predicted labels is similar to the groundtruth is not enough. In other
words, it is expected that each of the predicted labels is similar to any (even
all) of the groundtruth labels. Secondly, the error measure of d(y, yn) is either
coarse to quantify the difference of labels (i.e. flat error measure), or rigorous to
require the prior construction of taxonomic tree (i.e. hierarchical error measure).
Thirdly, the error measure indicates that the variances of labels are based on
the global statistics of training data, whereas for the incomplete setting, it is not
sufficient to model the relatedness of missing labels and groundtruth labels. In
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Figure 2, we demonstrate two examples of label prediction using flat structured
loss in OVA-SSVM. It can be observed that, although flat structured loss (in
fifth column) is generated to be zero (since the predicted labels bloom, man

match the incomplete groundtruth Y n ), the predicted result (in third column)
is inferior which contains several incorrect labels, e.g. {fruit, forest}, {woman,

bottle, forest}. Thus, it implies that numerically minimizing the structured loss
of Eq.8 could not guarantee all predicted labels to be similar to groundtruth
labels.

Image xn Incomplete
labels Y n

Predicted labels Y Structured loss ∆
OVA-SSVM

(Flat)
Proposed Flat

Image
specific

bloom,
leave

bloom,
flower,
fruit,
forest,
branch

bloom (0),
leave (0),

trunk (0.531),
flower (0.552),
plant (0.765)

0 0.3696

man,
one,
rock

man,
woman,
front,
bottle,
forest

man (0),
rock (0),

tee-shirt (0.647),
hand (0.685),

waterfall (0.689)

0 0.4042

Fig. 2. Examples of label prediction using flat loss (OVA-SSVM (Flat)) vs. image spe-
cific structured loss (proposed method). These two images are selected from IAPRTC-
12 dataset. Note that in the fourth column, the image specific loss of each predicted
label is also provided. And the loss values ∆ in last two columns are calculated accord-
ing to Eq.8 and Eq.9 respectively.

To address the limitations of Eq.8, we assume that each of the predicted
labels is related to all of the groundtruth labels, and we desire the structured
loss term to capture the variances of labels relying on the specific image content.
Our proposed image specific loss function is formulated as

∆(Y, Y n;xn) =
1

|Y |

1

|Y n|

∑

y∈Y

∑

yn∈Y n

d(y, yn;xn). (9)

Here the error measure d(y, yn;xn) is image specific, representing the difference
of label y and yn particularly on image xn. In addition, the structured loss
∆(Y, Y n;xn) ensures that each of the predicted labels in Y to be related to all
the groundtruth labels in Y n. Since the incomplete label set Y n is small, here
we restrict the structured loss of Eq.9 to moderately consider the dependencies
between each of the predicted labels and all labels in Y n.
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Inspired by the works [10, 14], we cast measuring d(y, yn;xn) to comparing
the relatedness of image xn to labels y and yn. In particular, for a given label yc,
let X+

c be the set of images that are annotated with label yc, and the remaining
images as X−

c = X\X+
c . For image xn in X+

c , we define the relatedness of image
xn to label yc as R(xn, yc) = 1 since xn is annotated with yc. And for image xn

belongs to X−
c of yc, we determine the relatedness score of R(xn, yc) considering

three factors: visual similarity, semantic similarity and image-label association
in the visual neighborhood. Specifically, R(xn, yc) consists of

– Visual similarity based relatedness score RV (x
n, yc): We compute the visual

distance dist(·) (scaled to range [0, 1]) of xn with its nearest neighbor x∗ ∈
X+, and define RV (x

n, yc) = 1− dist(xn, x∗).
– Semantic similarity based relatedness score RS(x

n, yc): We first compute
the correlation score between pairwise labels yi and yj , ∀yi, yj ∈ Y as:

co occur(yi, yj) =
fi,j

fi+fj−fi,j
, where fi and fj are the count of occurrence of

labels yi and yj , and fi,j is the count of co-occurrence of labels yi and yj. Let
Y n be the label set of image xn, we define RS(x

n, yc) = maxy∈Y n co occur(yc, y).
– Reverse nearest neighbors based relatedness score RN (xn, yc): For a fixed

value ofM(= 5), let pm be the number of images in X+
c that have xn as their

mth nearest neighbor. Then we define RN (xn, yc) =
∑M

m=1
pm

m
/
∑M

m=1 pm + ε,
where ε > 0 is a small number to avoid division by zero.

Finally, R(xn, yc) is defined as the average of these three scores, similar as in
[14]:

R(xn, yc) = average(RV (x
n, yc) +RS(x

n, yc) +RN (xn, yc)). (10)

Now we can calculate the error measure d(y, yn;xn) by comparing the relatedness
scores of image xn to labels y and yn as

d(y, yn;xn) = R(xn, yn)−R(xn, y) = 1−R(xn, y). (11)

Recalling that yn ∈ Y n is the groundtruth label of xn, thus it has highest
relatedness score (equals to 1). It can be learnt that the calculation of Eq.11 is
directly determined by the relatedness score R(xn, y) of label y to image xn. And
if the predicted label y has larger relatedness score to xn, it would have small
difference with all the groundtruth labels. This is consistent with the proposed
structured loss of Eq.9, which now can be efficiently measured by the relatedness
of predicted labels to the specific image.

Compared with the flat/hierarchical structured loss, our proposed structured
loss of Eq.9 has several advantages. Firstly, as shown in Figure 2, although the
loss values (in last column) are numerically larger than “zero” of flat structured
loss (in fifth column), the predicted labels is more similar to the provided in-
complete labels. This is because proposed structured loss moderately considers
the predicting labels based on their relatedness to specific image content, and
the relatedness measure is elaborately designed and more appropriate than the
simple 0-1 measure. Secondly, the proposed structured loss is more flexible to
the number of groundtruth labels as it accumulatively measures each of the pre-
dicted labels to all the groundtruth, while the flat structured loss focuses on the
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most dominant one in the predicted label to a single label of the groundtruth
labels. Thirdly, the relatedness measure can be directly and precisely computed
from labeled training images, while to construct the hierarchical measure, usu-
ally prior knowledge of taxonomy or large quantities of training data with full
labelling is required.

3.2 Optimization method

Given the proposed structured loss function of Eq.9, we can generate the most
violated constraint of prediction Ȳ for image xn according to Eq.7 as the form

Ȳ = argmax
Y ∈Y

{
1

|Y |

1

|Y n|

∑

y∈Y

∑

yn∈Y n

d(y, yn;xn) +
∑

y∈Y

w · φ(xn, y)}

= argmax
Y ∈Y

{
1

|Y |

∑

y∈Y

(1 −R(xn, y)) +
∑

y∈Y

w · φ(xn, y)}, (12)

where the calculation of structured loss ∆(Y, Y n;xn) is converted to compute
the relatedness scores of predicted label set Y to image xn, as described in
Section 3.1. We can obtain the solution of Y of Eq.12 by simply sorting the term
1

|Y | (1−R(xn, yc))+w ·φ(xn, yc) for each label yc ∈ Y, and then choose the top K

labels for Ȳ . Solving Eq.12 greedily takes O(C logC), thus it is faster than the
constraints generation method in OVA-SSVM which takes O(C2 logC). After we
have generated the most violated constraint Ȳ for each image, the lower bound
of the objective function in Eq.6 can be derived as

J(w) =
λ

2
‖w‖2 +

1

N

N
∑

n=1

[

∆(Ȳ − Y n) +w · Φ(xn, Ȳ )−w · Φ(xn, Ωn)
]

, (13)

and the gradient of J(w) with respect to w is

∇wJ(w) = λw +
1

N

N
∑

n=1

[

w · Φ(xn, Ȳ )−w · Φ(xn, Ωn)
]

. (14)

It can be observed in Eq.13 and Eq.14 that calculating J(w) and its gradient
involves in computing the joint feature vector Φ(xn, Ωn) on “full” label set Ωn of
each image. And Φ(xn, Ωn) can be efficiently computed according to Eq.5 with
latent variable Zn. To learn the parameter vector w with latent variable Zn,
we follow the previous alternating optimization technique proposed in [19, 20].
Specifically, we alternate between optimizing the parameter vector wt by initial-
izing the latent variable Zn for each image in the tth iteration, and re-estimate
the latent variable Zn for the (t+1)th iteration given the learnt parameter vector
w

t. The pseudocode for solving the alternating optimization problem is depicted
in Algorithm 1.
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Algorithm 1 Alternating optimization of proposed method

Input: Incompletely labeled training data T = {(xn, Y n)}Nn=1, pre-trained binary
classifiers {wyc

OVA}
C
c=1

Output: Parameter vector w
1: Initialize w0 = 1 for iteration t = 0
2: repeat

3: Set t = t+ 1
4: for n = 1, ..., N do

5: Assign latent variable Zn
t = {argmaxY ∈Y wt−1 · Φ(xn, Y )}\Y n for xn (pre-

serving K − |Y n| missing labels)
6: end for

7: for n = 1, ..., N do

8: Generate the most violated constraint Ȳt for xn according to Eq.12
9: end for

10: Compute objective Jt(w) and gradient ∇wJt(w) according to Eq.13 and Eq.14
11: Minimize loss of Eq.6 to calculate wt

12: until Loss in Eq.6 is converged

4 Experimental evaluation

In this section, we evaluation the effectiveness of proposed method through com-
paring it with the previous OVA-SSVM and other state-of-the-art annotation
methods under incomplete setting.

4.1 Experimental setup

Datasets and Features. Our evaluation experiments are conducted on two
publicly available benchmark datasets: IAPRTC-12 [1] and NUS-WIDE [2]. These
two datasets are very challenging with significant diversity among the images
that are obtained from the social web. Table 1 shows the general statistics of
these two datasets, and it is worth noting that they cover both conditions of large
vocabulary size and large number of images. In our experiments, for IAPRTC-12
dataset, we use the same multiple features as those in [5, 6, 14, 15]. These mul-
tiple features consist of global and local features. The global features include
histograms in RGB, HSV and LAB color space, and the GIST features; and the
local features include the SIFT and hue descriptors obtained densely from multi-
scale grid, and from Harris-Laplacian interest points. For NUS-WIDE dataset,
besides global GIST features, we also extract five types of SIFT based local
features (C-SIFT, Opponent-SIFT, RGB-SIFT, RG-SIFT) using the public col-
orDescriptor tools [23]. The SIFT based features are computed without orienta-
tion invariance and the grid has a step size of three. The codebook for each SIFT
based feature is generated from 7,000 randomly selected images, and quantized
to 4,000 corresponding k-means clusters. For both datasets, we first separately
perform L2 normalization for each type of feature, and then concatenate them to
an fused feature vector (37,152-dimension for IAPRTC-12 and 20,512-dimension
for NUS-WIDE) to represent each image.
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Table 1. General statistics for the two datasets used for evaluation. The items in the
second row are listed in the format “training/test”, and items in the third and fourth
rows are given in the format “mean/minimum/maximum”.

IAPRTC-12 NUS-WIDE

Total labels 291 81
No. of images 17,665/1,962 138,563/92,484

Labels per image 5.7/1/23 1.8/1/20
Images per label 34/153/4,999 2,512/333/16,425

Incomplete setting. We consider the original IAPRTC-12 as fully labeled
dataset since the average number of labels per image is more than 5 (5.7 in
Table 1), which could be sufficient to describe multiple objects in an image.
To simulate the incomplete setting, we randomly delete partial labels for each
image, and the deletion process stands by the principle min(1, ⌈M×(1−ratio)⌉)
ensure that each image preserve at least one label. Here M denotes the number
of original labels of an image, ⌈·⌉ denotes the ceiling function which gives the
smallest integer not smaller than the given value, and ratio represents the degree
of incompletion. In our experiments, we set ratio = {10%, 30%, 50%, 70%, 90%},
and it indicates that the larger the ratio is, the higher the degree of incompletion
would be. For NUS-WIDE, as the average number of labels per image is less than
2 (1.8 in Table 1), which could be insufficient compared with the situation of
IAPRTC-12, we treat the NUS-WIDE as incomplete labeled dataset, and directly
utilize the original annotations for incomplete setting.

Binary classifiers. As proposed method needs pre-trained binary classifier for
each class as a starting point for structured learning, we follow previous works
[14, 20] and learn OVA-SVM classifiers for initialization. In particular, we train
a linear OVA-SVM classifier for each label using Pegasos [24] algorithm and
calibrate the raw confidence scores from the SVM classifiers to probabilities
with Platt [25] algorithm. Finally, we obtain linear OVA-SVM classifiers with
compatible probability scores and use them as initial input to proposed method.

Evaluation metrics. Given an unlabeled test image, we first compute the score
for each label using the learnt model, and then select five top-scoring (K = 5,
|Y | = 5) labels according to Eq.4. And we use two standard criteria to evaluate
the performance: (1) average precision per label P , (2) average recall per label R.
Note that the P and R scores are obtained by first computing precision and recall
for each label and then averaging. In addition, as the number of labels in NUS-
WIDE dataset is considerably small, we add another two criteria: Hamming loss

and Average AUC, which take the performance of overall prediction and ranking
into account. For all the adopted evaluation metrics except Hamming loss, larger
numerical value indicates better performance.
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Fig. 3. Evaluation of coverage of latent variables with various degree of incompletion.

4.2 Evaluation on IAPRTC-12 dataset

Assessment of assigning latent variables. We first consider proposed method
using image specific structured loss and OVA-SSVM (Flat) method using flat
structured loss, to compare the efficiency of structured learning with latent
variables. Specifically, we explore how closely the assigned latent variable Zn

matches those labels Ωn\Y n deleted from the originally full annotations of im-
age xn when training as in Algorithm 1. We use a measure termed Coverage =
1
N

∑N
n=1

|Zn∩(Ωn\Y n)|
|Zn| to represent the averaged intersection between Zn and

Ωn\Y n for all training image xn ∈ X . Note that higher coverage indicates bet-
ter assignments of latent variables.

Figure 3(a) shows the overall coverage of latent variable to the deleted labels
in the full annotations with different degree of incompletion. It can be observed
that (1) the coverage of latent variable of both methods increases when the degree
of incompletion becomes lower, and this is reasonable because the more labels
we have, the better we can predict the missing labels; (2) our proposed method
consistently obtains higher coverage for missing labels than OVA-SSVM (Flat)
which simply uses flat structured loss, as the image specific structured loss used
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in our method is more efficient to exploit various contextual information of labels
and images under the incomplete setting. Furthermore, in Figure 3(b)-(d), we
explicitly demonstrate the changing of coverage of the latent variables through
the iterations (as described in Algorithm 1) under different degree of incom-
pletion: 10%, 50%, 90%. We can learn that proposed image specific structured
loss is appropriate to ensure our method to perform robustly, while OVA-SSVM
(Flat) seems to be unstable through the iterations and results in inferior cover-
age. Especially, when the degree of incompletion is pretty high (e.g. 50%, 90%),
the coverage of proposed method is significant better than OVA-SSVM (Flat),
which solidly verifies the superiority of proposed method under the incomplete
setting.
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Fig. 4. Comparison of annotation performance with various degree of incompletion.

Overall comparison with various degree of incompletion. To make com-
prehensive comparison, we first explore the labeling results from binary classi-
fiers: OVA-SVM and SVM-VT [14] (OVA-SVM combined with proposed image
specific label relatedness as depicted in Section 3.1, without structured learning),
then boost the binary classifiers by structured learning via flat structured loss
(OVA-SSVM (Flat)) and image specific structured loss (proposed method).

Figure 4 shows the annotation results of four methods in terms of P and R
with various degree of incompletion. Firstly, it can be seen that as the degree of
incompletion decreases, the performance of all methods becomes better, since we
have more labels for training. Secondly, our method can boost the performance
of binary classifiers OVA-SVM and SVM-VT under incomplete setting, which
verifies the efficiency of the incrementally structured learning. Thirdly, regarding
the structured learning stage, proposed method performs remarkably better than
OVA-SSVM (Flat) which uses the flat structured loss, especially when the degree
of incompletion is considerably high (50% ∼ 90%). The reason behind this is



Image Annotation with Incomplete Labelling 13

that we use more appropriate structured loss which efficiently accounts for the
dependencies between the predicted labels under the incomplete setting.

4.3 Evaluation on NUS-WIDE dataset

Regarding experiments on incompletely labeled NUS-WIDE dataset, besides the
four methods compared above, we also consider state-of-the-art annotation meth-
ods with assumptions of full labelling and incomplete labelling. Methods for full
labelling include JEC [5], Tagprop [6], and M3L [26]. Methods for incomplete
labelling consist of SVM-VT [14], MLR-GL [13], Fasttag [15] and LEML [16].
To make fair comparison, we use codes provided by the authors and follow the
instructions in corresponding papers to tune model parameters.

Table 2. Annotation performance comparison among different methods on NUS-WIDE
dataset. Previous and our best results are highlighted in bold.

Method P (%) R (%) Average AUC Hamming loss

JEC [5] 11.9 16.6 0.557 0.083
Tagprop [6] 13.2 23.8 0.707 0.074
OVA-SVM 12.3 22.8 0.782 0.079
M3L [26] 16.1 23.2 0.791 0.071

SVM-VT [14] 16.7 24.3 0.806 0.069
MLR-GL [13] 14.2 23.5 0.722 0.078
Fasttag [15] 18.4 21.3 0.834 0.067
LEML [16] 17.5 24.6 0.798 0.076

OVA-SSVM (Flat) [20] 16.9 24.1 0.772 0.070
Proposed 17.7 25.6 0.819 0.064

Table 2 shows the annotation performance of different methods. And we can
make the following observations: (1) The proposed method consistently boosts
the binary SVM classifiers (OVA-SVM and SVM-VT) and also obtain better
performance than OVA-SSVM (Flat). (2) The annotation methods including
proposed method designed for incomplete labelling are generally superior to
conventional annotation methods with full labelling, which again addresses the
significance of tackling the issue of incompletion of practical annotation data.
(3) The proposed method performs comparable or better than even the recently
proposed methods with incomplete labelling, which corroborates the efficiency of
structured learning on capturing the semantic correlations of labels when labels
are incomplete.

Figure 5 gives qualitative samples of the annotation results of the proposed
method on the two datasets. In particular, for IAPRTC-12 dataset, we preserve
the original training images without the deletion process to evaluate the gen-
eralization of proposed method. From the samples we can see that, although
the number of groundtruth labels are few, our method can still make correct
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prediction to them. In addition, our method can also reflect semantic connect-
edness among the predicted labels, e.g. {field, landscape}, {gravel, road, stone},
{beach, sand, ocean}, etc. This further demonstrates the effectiveness of pro-
posed method using structured learning.

field, mountain front, house, tourist field, groundstand, spectator road

mountain, cloud, sky,
field, landscape

house, building, street,
tourist, front

field, stadium, player,
spectator, ground

llama, gravel, road
stone, shrub

sand, sky glacier, sky, snow lake, water sand

beach, sand, sky,
rocks, ocean

glacier, mountain, snow
rocks, sky

lake, water, house,
reflection, mountain

sky, sand, animal,
person, horse

Fig. 5. Samples of annotation results of the proposed method on IAPRTC-12 (the
upper row) and NUS-WIDE (the lower row). The red labels are the groundtruth and
black ones are top five labels predicted using proposed method.

5 Conclusion and future work

In this paper, to tackle the issue of incomplete labelling, we leverage the struc-
tured learning method to boost the performance of conventional OVA-SVM clas-
sifiers, and we formulate an image specific structured loss function which is more
appropriate to explore the dependencies of predicted multiple labels. We further
develop an efficient optimization algorithm with lower computational complexity
to learn model parameters. Experimental evaluation verifies that the proposed
annotation method is efficient to handle the issue of incomplete labeling and
performs superior than several existing methods. In the future, we are planning
to extend our method to the scenario where even some of the incomplete labels
are incorrectly assigned to the training samples. This in turn would facilitate
the annotation model to be robust against the defection of training data.
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